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Abstract
We prove that the canonical connection of a bi-Lagrangian manifold introduced
by Hess is a Levi-Civita connection, showing that a bi-Lagrangian manifold (i.e.
a symplectic manifold endowed with two transversal Lagrangian foliations) is
endowed with a canonical semi-Riemannian metric.

PACS numbers: 0240, 0320

1. Introduction

Lagrangian foliations on symplectic manifolds are used in geometric quantization. As is well
known, the existence of a connection canonically attached to a symplectic manifold is an
important tool in obtaining a deformation quantization [1–3]. A bi-Lagrangian manifold (i.e. a
symplectic manifold endowed with two transversal Lagrangian foliations) admits a canonical
symplectic connection, which has been introduced by Hess in [1], and was used by several
authors [4, 5].

Here, we shall study geometric properties of a symplectic manifold endowed with a
Lagrangian distribution, and with two transversal Lagrangian distributions. We shall prove the
following important results.

Theorem 1. A symplectic manifold endowed with a Lagrangian distribution admits infinitely
many Lagrangian distributions.

Theorem 2. If a Kähler manifold admits a Lagrangian foliation F which is preserved by the
Levi-Civita connection ∇, then the orthogonal distribution to F defines a foliation F⊥ and the
canonical connection of the bi-Lagrangian structure defined by F and F⊥ is ∇.

Theorem 3. A bi-Lagrangian manifold is endowed with a canonical semi-Riemannian metric,
whose Levi-Civita connection coincides with the canonical connection of the bi-Lagrangian
manifold.

Theorem 2 proves that in some situations the canonical connection is the Levi-Civita
connection of a Riemannian metric. Theorem 3 states that the canonical connection is always
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the Levi-Civita connection of a canonical semi-Riemannian metric, thus allowing us the best
comprehension of this connection.

In fact, we shall prove that the bi-Lagrangian manifolds are exactly the para-Kähler
manifolds, as we shall show in the appendix. Thus, one can build a bridge between these
theories.

All the manifolds throughout the paper will be assumed to be smooth. The Lie algebra
of vector fields of a manifold M will be denoted as X (M). A Riemannian metric will be
denoted as G, whereas a semi-Riemannian metric of signature (n, n) will be denoted as g. On
the other hand, automorphisms of X (M) of square −id (respectively id) will be denoted as J

(respectively F ).

2. Preliminaries

Let (M, ω) be a symplectic manifold, with dim M = 2n. In the last few years, the following
definitions have been introduced:

(a) A Lagrangian distribution on M is an n-dimensional distribution D such that ω(X, Y ) = 0
for all vector fields X, Y ∈ D. Such a Lagrangian distribution is also called an almost
cotangent structure [6].

(b) A foliation F on M is said to be a Lagrangian foliation if its leaves are Lagrangian
submanifolds, i.e. each leaf N has dim N = n and ω(X, Y ) = 0, for every X, Y tangent
to N . Equivalently, a Lagrangian foliation is a foliation whose tangent distribution is a
Lagrangian distribution. A Lagrangian foliation is also called a polarization [7] and an
integrable almost cotangent structure (see [6, p 322]).

(c) (M, ω) is said to be endowed with an almost bi-Lagrangian structure if M has two
transversal Lagrangian distributions D1 and D2.

(d) (M, ω, F1, F2) is said to be a bi-Lagrangian manifold if the tangent distributions Di =
T (Fi ), i = 1, 2, define an almost bi-Lagrangian structure.

As is well known, a symplectic manifold (M, ω) admits several symplectic connections (a
symplectic connection ∇ is a torsionless connection parallelizing ω), but one needs additional
assumptions to obtain a canonical connection (see [8]), where some sufficient conditions are
quoted). Bi-Lagrangian manifolds admit a canonical connection, introduced by Hess in [1] in
a quite difficult way, that one can reduce to the following expression (see also [4, 5]):

(e) The canonical connection of a bi-Lagrangian manifold is the unique symplectic
connection ∇ which parallelizes both foliations F1 and F2, i.e. such that ∇XY ∈ T (Fi ),
for all vector fields X in M and all vector fields Y ∈ T (Fi ).

On the other hand, we shall need some notation for almost product structures:

(f) An almost product manifold (M, F ) is a manifold M endowed with a (1, 1) tensor
field F satisfying F 2 = id. Then F + = {X ∈ X (M)/F (X) = X} and F− = {X ∈
X (M)/F (X) = −X} define two transversal distributions, i.e. the tangent bundle of M

admits a decomposition as a Whitney sum: T M = F + ⊕ F−. Moreover, the converse is
true: if a manifold M is endowed with two transversal distributions T M = D1 ⊕D2, then
one can define the projectors πi : T M → Di , and then F = π1 − π2 defines an almost
product structure on M .
The involutiveness of both distributions F + and F− can be easily characterized by the
vanishing of the Nijenhuis tensor field NF of F (remember that the Nijenhuis tensor field
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NF is the (1, 2) tensor field defined as NF (X, Y ) = [FX, FY ] + F 2[X, Y ] −F [FX, Y ] −
F [X, FY ]).
On the other hand, one can easily check that a linear connection ∇ on an almost product
manifold (M, F ) parallelizes both distributions F + and F− iff ∇F = 0. Moreover, one
can prove [9] that if ∇ is a torsionless connection parallelizing F , then NF = 0, thus
proving that the manifold has two transversal foliations.

(g) A Riemannian almost product manifold (M, F, G) is an almost product manifold (M, F )

endowed with a Riemannian metric G such that G(FX, FY) = G(X, Y ), for all
X, Y ∈ X (M). In this case the distributions F + and F− are G-orthogonal.

We assume that the basic theory of complex and Kähler manifolds is known.

3. Lagrangian distributions

Let (M, ω) be a symplectic manifold, with dim M = 2n. First, we shall prove the following
result.

Theorem 1. Let (M, ω) be a symplectic manifold and let D be a Lagrangian distribution.
Then, M admits infinitely many different Lagrangian distributions.

Proof. First of all, we shall prove that there exists a transversal Lagrangian distribution.
Taking into account that (M, ω) is an almost symplectic manifold one can find [7, 10] an
almost Hermitian structure (J, G) on M such that ω(X, Y ) = G(JX, Y ). Let D⊥ be the
G-orthogonal distribution to D. Then one has:

(a) If X, Y ∈ D, then G(JX, Y ) = ω(X, Y ) = 0, thus proving that J (D) = D⊥;
(b) D⊥ is a Lagrangian distribution, because ω(JX, JY ) = ω(X, Y ), for all X, Y ∈ X (M).

Let F be the almost product structure defined by D and D⊥, i.e. F + = D and F− = D⊥.
Then, one can easily check that J ◦ F = −F ◦ J . Moreover, one can prove that (M, F, G) is
a Riemannian almost product manifold:

If X ∈ X (M), then X = X1 + X2, where X1 ∈ F + = D and X2 ∈ F− = D⊥ = J (D),
and one can write X2 = J (X3), with X3 ∈ F +. Using this notation we obtain

G(X, Y ) = G(X1 + JX3, Y1 + JY3) = G(X1, Y1) + G(JX3, JY3)

= G(X1, Y1) + G(X3, Y3)

and

G(FX, FY) = G(X1 − JX3, Y1 − JY3) = G(X1, Y1) + G(JX3, JY3)

= G(X1, Y1) + G(X3, Y3)

thus proving G(FX, FY) = G(X, Y ).
Let α and β be real numbers such that α2 + β2 = 1. Then one can define the (1, 1)

tensor field F(α,β) given by F(α,β)(X) = αF(X) + βJF(X). Then, one easily check that
F(α,β) ◦ F(α,β) = id, thus proving that F(α,β) defines an almost product structure on M .

Let us consider the distribution F +
(α,β). We shall show that it is a Lagrangian distribution.

Let us consider X, Y ∈ F +
(α,β). Then, F(α,β)(X) = X and F(α,β)(Y ) = Y , i.e. X =

αF(X) + βJF(X) and Y = αF(Y ) + βJF(Y ). Let us compute ω(X, Y ):

ω(X, Y ) = G(JX, Y ) = G(αJFX + βJJFX, αFY + βJFY)

= α2G(JFX, FY) + αβG(JFX, JFY) + αβG(−FX, FY) + β2G(−FX, JFY)
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= −α2G(JX, Y ) + αβG(X, Y ) − αβG(X, Y ) + β2G(X, JY )

= −α2ω(X, Y ) + β2G(JY, X) = −α2ω(X, Y ) − β2ω(X, Y ) = −ω(X, Y )

thus proving ω(X, Y ) = 0 and finishing the proof. �

Remark. The above construction shows that M admits a biparacomplex structure in the
sense of an unpublished paper of Cruceanu, which is explained in a paper by Santamarı́a [9]
(there are other equivalent presentations [11]), because one has two almost product structures
F and P = J ◦ F which anticommutates (F ◦ P = −P ◦ F ). A biparacomplex manifold
M is, equivalently, a manifold endowed with three equidimensional distributions, D1, D2,
D3, such that the tangent bundle of M admits three decompositions as a Whitney sum
T M = D1 ⊕ D2 = D1 ⊕ D3 = D2 ⊕ D3. When these distributions are involutive the
manifold is said to be endowed with a 3-web.

On the other hand, the deep relations among almost Hermitian, almost para-Hermitian
and biparacomplex structures on a manifold have been studied by the authors [12].

If (M, J, G) is a Kähler manifold, then the Kähler form ω, defined as ω(X, Y ) =
G(JX, Y ), is closed and then (M, ω) is a symplectic manifold. One can expect that Lagrangian
foliations in a Kähler manifold possess strong properties. This is the case, because one has:

Theorem 2. Let F be a Lagrangian foliation in a Kähler manifold (M, J, G), such that the
Levi-Civita connection ∇ of G parallelizes the foliation. Then:

(a) the orthogonal distribution D⊥ = (T F)⊥ is parallel respect to ∇;
(b) D⊥ is involutive, and then M is a bi-Lagrangian manifold;
(c) ∇ is the canonical connection associated with the bi-Lagrangian structure;
(d) all the distributions obtained in the above theorem are involutive.

Proof.

(a) Let X ∈ D = T (F), Y ∈ X (M) and Z ∈ D⊥ and let ∇ be the Levi-Civita connection of
G. Then, one obtains

0 = (∇Y G)(X, Z) = Y (G(X, Z)) − G(∇Y X, Z) − G(X, ∇Y Z) = 0 − 0 − G(X, ∇Y Z)

thus proving that ∇Y Z ∈ D⊥.
(b) Let A, B ∈ D⊥. We must prove that [A, B] ∈ D⊥. Let X, Y ∈ D such that J (X) = A,

J (Y ) = B (the existence and uniqueness of X, Y can be deduced from the isomorphism
J |D : D → D⊥). Then as (M, J, G) is Kähler, one has that ∇ is torsionless and ∇J = 0,
thus allowing us to obtain

[A, B] = [JX, JY ] = ∇JXJY − ∇JY JX = J (∇JXY − ∇JY X) ∈ J (D) = D⊥.

(c) (M, J, G) being Kähler, one has ∇ω = 0 and ∇ is torsionless. By the hypothesis, ∇
parallelizes F , and by (1) and (2) ∇ also parallelizes F⊥, where F⊥ denotes the foliation
defined by D⊥.

(d) We have to prove that X, Y ∈ F +
(α,β) implies [X, Y ] ∈ F +

(α,β). The direct computation is
tedious, so we shall give a different proof. Taking into account (M, J, G) is Kähler and
(3) one has ∇J = 0 and ∇F = 0. Let P = J ◦ F . Then, one easily proves that ∇P = 0
(remember the remark below the above proposition: P is an almost product structure).
One can also write F(α,β)(X) = αF(X) + βP (X) and one has

(∇F(α,β))(Y, X) = ∇X(F(α,β)Y ) − F(α,β)(∇XY ) = ∇X(αFY + βPY) − F(α,β)(∇XY )

= αF(∇XY ) + βP (∇XY ) − F(α,β)(∇XY ) = 0.
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Then, ∇F(α,β) = 0, and then NF(α,β)
= 0 thus proving that the distributions F +

(α,β) and
F−

(α,β) are both involutive. �

4. Bi-Lagrangian manifolds

A bi-Lagrangian manifold is a symplectic manifold endowed with two transversal Lagrangian
foliations. As we have said, such a manifold admits a canonical symplectic connection which
preserves both foliations. We want to prove that this connection is the Levi-Civita connection
of a canonical metric on the manifold.

Theorem 3. Let (M, ω, F1, F2) be a bi-Lagrangian manifold. Then M admits a canonical
neutral metric g whose Levi-Civita connection coincides with the canonical connection of the
bi-Lagrangian manifold.

Proof.

(a) Let (M, ω, F1, F2) be a bi-Lagrangian manifold. We define the (1, 1) tensor field F by
F |D1 = id and F |D2 = −id, let Di be the tangent distribution to the foliation Fi , and the
map g which applies two vector fields X, Y ∈ X (M) to g(X, Y ) = ω(FX, Y ). Now, we
prove that g is a neutral metric.
Let x ∈ M and let {X1, . . . , Xn, Xn+1, . . . , X2n} be a basis of the tangent space TxM such
that {X1, . . . , Xn} generates the first distribution D1 at x, {Xn+1, . . . , X2n} generates the

other distribution D2 at x and the matrix of ωx is
( 0 I

−I 0

)
with respect to that basis. One

can easily check that g = ( 0 I

I 0

)
with respect to the basis, thus proving that g is a neutral

metric.
(b) As ∇ is the canonical connection of (M, ω, F1, F2) we know that ∇ is a torsionless

connection parallelizing ω and both foliations (or equivalently, ∇F = 0). We must prove
that ∇g = 0, but this is a direct consequence of the quoted properties of ∇:

(∇Xg)(Y, Z) = X(g(Y, Z)) − g(∇XY, Z) − g(Y, ∇X, Z)

= X(ω(FY, Z)) − ω(F(∇XY ), Z) − ω(FY, ∇XZ)

= X(ω(FY, Z)) − ω(∇X(FY ), Z) − ω(FY, ∇XZ)

= (∇Xω)(FY, Z) = 0

thus proving the result. �
Let (M, ω, F1, F2) be a bi-Lagrangian manifold. A diffeomorphism ϕ : M → M , which

preserves the symplectic structure (i.e. such that ϕ∗ω = ω) and the foliations (i.e. ϕ∗ sends a
tangent vector to Fi to tangent vectors to the same foliation Fi) can be called a bi-Lagrangian
automorphism. One can prove:

Corollary 4. Let (M, ω, F1, F2) be a bi-Lagrangian manifold. If ϕ : M → M is a bi-
Lagrangian automorphism, then ϕ is an isometry respect to the canonical neutral metric of
M .

Proof. ϕ being a bi-Lagrangian automorphism one has F ◦ ϕ∗ = ϕ∗ ◦ F and then

g(ϕ∗X, ϕ∗Y ) = ω(Fϕ∗X, ϕ∗Y ) = ω(ϕ∗FX, ϕ∗Y )

= (ϕ∗ω)(FX, Y ) = ω(FX, Y ) = g(X, Y ). �
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Appendix. Para-Kähler geometry

Theorem 3 can be extended to the following: there exists a bijection between bi-Lagrangian
structures and para-Kähler structures on a manifold. In order to understand this result, we shall
show some properties of para-complex and para-Kähler geometry, which have been developed
over the last five decades, starting with the works of Rashevskij [13] and Libermann [14] (see
the survey of Cruceanu et al [15] and the more than 100 references therein). The general
framework of this theory is the geometry of almost product structures (see definition (f) of
section 2). The basic notions that we need are the following.

(a) An almost para-Hermitian manifold (M, F, g) is a manifold M endowed with an almost
product structure F and a semi-Riemannian metric g such that g(FX, FY ) = −g(X, Y ),
for all vector fields X, Y in M . Then F + and F− define two equidimensional distributions
isotropic respect to g, and g is a neutral metric, i.e. the signature of g is (n, n). One
can define an almost symplectic structure on M given by the 2-form ω defined by
ω(X, Y ) = g(FX, Y ).

(b) An almost para-Kähler manifold is an almost para-Hermitian manifold whose almost
symplectic form ω is closed, i.e. (M, ω) is a symplectic manifold.

(c) A para-Kähler manifold is an almost para-Hermitian manifold (M, F, g) such that
∇F = 0, where ∇ is the Levi-Civita connection of g. Equivalently, both distributions F +

and F− are involutive and ω is closed.

As one can see both theories of complex and para-complex manifolds are quite similar.
Nevertheless, there exist important differences between them. In particular, the metric of
an almost para-Hermitian manifold is neutral and not Riemannian. On the other hand, the
geometric motivation of para-complex geometry is the study of manifolds endowed with two
transversal distributions, thus it is natural to think that this geometry would be useful in the
study of bi-Lagrangian manifolds.

Then, one can easily prove the following:

Theorem 5. Let M be a manifold. There exists a bijection between almost bi-Lagrangian
structures on M and almost para-Kähler structures on M .

Proof.

(a) In theorem 3 we have proved that an almost bi-Lagrangian manifold (M, ω, D1, D2) admits
a neutral metric g satisfying g(X, Y ) = ω(FX, Y ), for all vector fields X, Y ∈ X (M).
Then, one can consider the almost product structure F defined by the given distributions
D1 and D2, proving that (M, F, g) is an almost para-Hermitian manifold:

g(FX, FY ) = ω(F 2X, FY) = ω(X, FY ) = −ω(FY, X) = −g(Y, X) = −g(X, Y ).

Finally, the almost symplectic form attached to the almost para-Hermitian manifold
(M, F, g) is ω, which is closed, thus proving that (M, F, g) is almost para-Kähler.

(b) Let (M, F, g) be an almost para-Kähler manifold. Then, one can easily prove that F +

and F− are Lagrangian distributions with respect to ω (where ω(X, Y ) = g(FX, Y )),
because F + and F− are g-isotropic. �

The above bijection is restricted to bi-Lagrangian and para-Kähler structures.

Theorem 6. Let M be a manifold. There exists a bijection between bi-Lagrangian structures
on M and para-Kähler structures on M .
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Proof.

(a) Let (M, ω, F1, F2) be a bi-Lagrangian manifold and let (M, F, g) be the almost para-
Kähler structure defined by the above theorem. Then (M, F, g) is a para-Kähler manifold,
because both distributions F + = T (F1) and F− = T (F2) are, obviously, involutive.

(b) Let (M, F, g) be a para-Kähler manifold and let (M, ω, F +, F−) be the almost bi-
Lagrangian manifold obtained by the above theorem. Then, ω is closed and F +, F−

are involutive thus proving that (M, ω, F +, F−) is a bi-Lagrangian manifold. �

Final comments

The equivalence between bi-Lagrangian and para-Kähler structures seems to be known (see
p 97 of the survey [15] or a paper of Kaneyuki [16]), but it has not been shown in an explicit way.
Moreover, the canonical metric of a bi-Lagrangian manifold has not been used in symplectic
geometry. For this reason, we have shown this equivalence in a self-contained way. On the
other hand, the canonical connection of a bi-Lagrangian structure, was introduced by Hess in
a quite obscure way. Vaisman [4] and Boyom [5] subsequently obtained a nice expression for
this connection (see definition (e) of section 2). In the present paper, we have proved that it
is a Levi-Civita connection, which clarifies its nature. Moreover, all the results concerning
para-Kähler geometry can be translated to bi-Lagrangian geometry.
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[11] Vanžurová A 1995 Parallelisability conditions for differentiable three-webs Arch. Math. (Brno) 31 74–84
[12] Etayo F and Santamarı́a R 2000 (J 2 = ±1)-metric manifolds Publ. Math. (Debrecen) 57 435–44
[13] Rashevkij P K 1948 The scalar field in a stratified space Tr. Sem. Vektor. Tenzor. Anal. 6 225–48
[14] Libermann P 1954 Sur le problème d’équivalence de certaines structures infinitésimales Ann. Mat. Pura Appl.

36 27–120
[15] Cruceanu V, Fortuny P and Gadea P M 1996 A survey on paracomplex geometry Rocky Mount. J. Math. 26

83–115
[16] Kaneyuki S 1991 On a remarkable class of homogeneous symplectic manifolds Proc. Japan Acad. A 67 128–31


